An investigation was made into tank venting requirements for a tank being filled from a tank truck. The following data represents the typical case and is the basis for all calculations:

Tank – HD polyethylene material capable of 10” water column (w.c.) internal pressure. Capacity of 6,600 gallons normal. Dimensions of 12’ dia. by 10’ high or 10’ dia. by 13’-5” high. Total capacity to full includes the dome and adds 675 gallons additional for a total of 7,275 gallons.

Truck – 2 axle trailer with a 5,500 gallon capacity.

Air unloading equipment consisting of – 1” air line to pressurize truck trailer thereby forcing the liquid HCL up a 3” eductor tube to a hose connection.

Fill hose – 2” hose from hose connection on truck trailer to the fill connection of the storage tank.

Tank Vent -- 6” diameter vent from the storage tank to a seal pot located at grade with 6” depth of water above the vent outlet (used to scrub HCL vapors from the venting air).

HCL acid -- Liquid being transferred from truck trailer to the storage tank. Properties are:

Specific gravity -- 1.19
Viscosity -- 1.9 centipoise
37% by weight HCL

Temperature -- 60 °F (tables only list properties at this temperature, variation in viscosity and specific gravity are not likely to vary much within the actual range).
SECTION 1
FROM TANK TRUCK TO STORAGE TANK

30 PSIG IN TANK TRUCK
3" REDUCTION PIPE 6' LONG
3" BALL VALVE
3" 90° ELL
30' OF 2" RUBBER HOSE
(3) 2" 90° ELLS
15' 2" PIPE TANK NOZZLE

SECTION 2
FROM STORAGE TANK TO SCRUBBER

6" TANK NOZZLE
(2) 6" 90° ELLS
20' 6" PVC PIPE
6" TEE, BRANCH FLOW
6" W.C. BACKPRESSURE
Methodology of the calculation is to determine the actual flow in cubic feet per minute through Section 1 of the system with liquid HCL and with air as the flowing medium in a 2” diameter hose and fill lines. The pressure in the storage tank for both HCL and air can be considered to be 10 inches of water column as this is the rated pressure for the tank. Pressure in the truck trailer is 30 psig determined by the setting on the relief valve. Normal operating procedure is to be a few psi below the maximum, but for calculation purposes it is necessary to use the maximum.

The cubic feet per minute determined in Section 1 is then the flow rate which must pass out of the storage tank vent without causing the pressure in the tank to “grow” beyond 10” w.c. There is a back pressure of 6” w.c. at the exit of the vent (seal pot) due to the height of the water. The total motive pressure for the vent is 10 inches w.c. minus 6” w.c. That delta pressure is only 4 inches w.c. (0.144 psi).

Results for the Section 1 calculations show that the following flow rates in cubic feet per minute are achieved from the truck to the storage tank with a motive force of 30 psi – 10” w.c. (0.361 psi) = 29.639 psi.

\[
\begin{align*}
\text{HCL} & \\
2” \text{dia fill line} & \rightarrow 28.8 \text{ cfm} \\
\text{Air} & \\
2” \text{dia fill line} & \rightarrow 920 \text{ cfm}
\end{align*}
\]

Section 2 then must achieve vent flow rates equal to or better than those flow rates with a pressure differential of only 0.144 psi.

The calculated results for Section 2 flowing air and HCL vapor are as follows:

\[
\begin{align*}
\text{Vapor} & \\
4” \text{ dia vent line} & \rightarrow 382 \text{ cfm} \\
6” \text{ dia vent line} & \rightarrow 968.8 \text{ cfm}
\end{align*}
\]

This shows that the 4” vent is more than adequate for air pressure driving liquid HCL through the fill line. As long as there is total assurance that the unloading valve at the truck is closed before the truck is totally emptied, there would not be any problem with over pressurizing the Storage Tank. Resistance to flow due to the viscosity of the liquid HCL is sufficient to prevent a rapid displacement of the air inside the storage tank.

If, however, the valve at the truck is not closed before air enters the fill line, there will be a very rapid increase of the flow rate into the Storage Tank. The truck will have become a very large air receiver filled with 30 psig air. This air will rush through the fill line into the Storage Tank at the rate shown above of 920 cfm. That air will start leaving the
Tank at 382 cfm (4” dia vent) or 969 cfm (6” dia. vent) at the Tank’s maximum pressure of 10 inches w.c. With the 4” vent, pressure will then continue to build until equilibrium of flow is achieved or until the Tank fails. Calculations were made with 1 psig in the tank which showed that air would enter the tank at 890 cfm and would vent out of the tank at 878 cfm. Equilibrium would be established at slightly over 1.0 psig in the Tank (by extrapolation). This is also roughly at the failure point of the tank. Clearly, a 4 inch vent is not adequate.

As an example of how quickly a tank failure could happen, let's look at the case of a truck being emptied with a 2” line and hose to the Storage Tank and a 4” vent line to the water seal (scrubber). We can assume that the truck completely unloaded the typical capacity of 5,500 gallons. The Tank has a total volume of 7,275 gallons counting the dome.

Tank air space = (7,275 gallons – 5,500 gallons) / 7.48 gal/cu.ft. = 237 cu.ft.

From the previous calculations we know that an average flow rate of around 900 cfm would be achieved as the tank went from a few inches of water column to 1.0 psig internal pressure. Flow out through the 4” vent will vary from around 200 cfm immediately after air starts flowing to 878 at 1 psig. Using 550 cfm as the average vent flow, we have the tank being filled with 1 psig air at a rate of 350 cfm (900 – 550) into a space of 237 cu. ft. total. This indicates that the tank would reach 1 psig in less than 1 minute after air starts flowing through the fill line. (This approach to determining time to reach pressure is greatly simplified and certainly not mathematically rigorous, but it is sufficient to see that it would be a very short time before tank failure could potentially occur.)

That time would be significantly shortened if the tank was more than 3/4 full, thus reducing the available air space. Also we know that if a 3" fill hose were used instead of a 2" hose, the time before failure would again be shortened.

Conclusion: Unless secondary safety devices are in place to protect the Storage Tank from an internal pressure above 10” w.c., it would not be prudent to use a vent smaller than 6" diameter when unloading a tank truck using 30 psig air as the motive force. The margin of error is so small to protect the tank with only 10” w.c. internal pressure rating that a safety relief device, such as a weighted hinged lid on the tank, is strongly recommended.
ONE-PAGE SUMMARY

File Name: POLY1-A

FLUID DESCRIPTION

Asmpt: Incompressible
Fluid: Hydrochloric Acid Solution, 37.00 % Hydrochloric Acid
Temperature: 60.00 Fahrenheit
Density: 74.29 lb/cu ft
Specific Volume: 0.013 cu ft/lb
Specific Gravity: 1.190
Abs. Viscosity: 1.900 centipoise
Kin. Viscosity: 1.597 centistokes

HARDWARE DESCRIPTION

Number of Components: 11
Branch Inlet Diameter: 3.068 inches
Branch Outlet Diameter: 2.047 inches
Branch Elevation Change: 0.0 feet
Branch K Factor: 38.40

FLOW DESCRIPTION

Mass Flow Rate: 128,421.81 lb/hr
Volumetric Flow Rate: 28.81 cu ft/min = 215.52 US gal/min
Velocity: 9.35 ft/sec (FPS)
Differential Pressure: 29.64 PSID
Head Loss: 52.21 feet
Head Loss: 26.937 PSID

The low displacement rate of 28.8 acfm indicates a 3" vent would be acceptable as long as only HCL is flowing.
FLOW DESCRIPTION - TABLE

Mass Flow Rate: 128,421.81 lb/hr
Volumetric Flow Rate: 28.81 cu ft/min = 215.52 US gal/min

Units as follows:
- Velocity: ft/sec (FPS)
- Head Loss: feet
- Differential Pressure: PSID

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Inl Vel</th>
<th>Out Vel</th>
<th>HL</th>
<th>DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>INLET</td>
<td>9.35</td>
<td>52.21</td>
<td>29.639</td>
<td></td>
</tr>
<tr>
<td>Entrance, 3'' proj</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe, NPS 3, sched 40, 8.00''</td>
<td>9.35</td>
<td>9.35</td>
<td>0.07</td>
<td>0.036</td>
</tr>
<tr>
<td>Ball valve</td>
<td>9.35</td>
<td>20.61</td>
<td>1.80</td>
<td>3.632</td>
</tr>
<tr>
<td>Reducer, 3 X 2'' sud</td>
<td>22.01</td>
<td>22.01</td>
<td>25.00</td>
<td>12.896</td>
</tr>
<tr>
<td>Pipe, NPS 2, 30.00''</td>
<td>21.01</td>
<td>21.01</td>
<td>12.61</td>
<td>6.504</td>
</tr>
<tr>
<td>Pipe, NPS 2, sched 40, 18.00''</td>
<td>21.01</td>
<td>21.01</td>
<td>0.39</td>
<td>0.202</td>
</tr>
<tr>
<td>Ball valve</td>
<td>21.01</td>
<td>21.01</td>
<td>5.48</td>
<td>2.830</td>
</tr>
<tr>
<td>[3] Elbow, 2'' 90 LR flg/BW</td>
<td>21.01</td>
<td>21.01</td>
<td>6.86</td>
<td>3.539</td>
</tr>
<tr>
<td>Exit, 2'' sharp-edged</td>
<td>21.01</td>
<td>52.21</td>
<td>29.639</td>
<td></td>
</tr>
</tbody>
</table>
ONE-PAGE SUMMARY

Air Flowing

File Name: POLY1-A

FLUID DESCRIPTION

Inlet Fluid Conditions
Spec. Heat Ratio (Cp/Cv): 1.400
Molecular Weight: 28.96
Specific Gravity: 1.000

Temperature: 80.00 Fahrenheit
Pressure: 30.00 PSIG = 44.70 PSIA
Density: 0.22 lb/cu ft
Specific Volume: 4.471 cu ft/lb

Abs. Viscosity: 0.018 centipoise
Kin. Viscosity: 5.080 centistokes

HARDWARE DESCRIPTION

Number of Components: 11
Branch Inlet Diameter: 3.068 inches
Branch Outlet Diameter: 2.047 inches

Branch Elevation Change: 0.0 feet
Branch K Factor: 37.04

FLOW DESCRIPTION

Mass Flow Rate: 5,675.26 lb/hr
Std Vol. Flow Rate: 1,239.224 SCFM
Inlet Vol. Flow Rate: 422.93 cu ft/min = 3,163.73 US gal/min
Inlet Velocity: 137.30 ft/sec (FPS)
Inlet Mach No.: 0.121
Outlet Vol. Flow Rate: 320.11 cu ft/min = 6,882.90 US gal/min
Outlet Velocity: 671.00 ft/sec (FPS)
Outlet Mach No.: 0.688

Differential Pressure: 29.64 PSID
FLOW DESCRIPTION - TABLE

Mass Flow Rate: 5,675.26 lb/hr
Std Vol. Flow Rate: 1,239.224 SCFM

Units as follows:
- Volumetric Flow Rate: cu ft/min
- Velocity: ft/sec (FPS)
- Differential Pressure: PSID

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Inl Vel</th>
<th>Inl Vol</th>
<th>DP</th>
<th>Exp Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>INLET</td>
<td>137.30</td>
<td>422.93</td>
<td>29.640</td>
<td>NA</td>
</tr>
<tr>
<td>Entrance, 3" proj</td>
<td>137.30</td>
<td>422.93</td>
<td>0.361</td>
<td>NA</td>
</tr>
<tr>
<td>Pipe, NPS 3, sched 40, 8.00'</td>
<td>138.10</td>
<td>425.39</td>
<td>0.262</td>
<td>NA</td>
</tr>
<tr>
<td>Ball valve</td>
<td>138.69</td>
<td>427.19</td>
<td>0.024</td>
<td>NA</td>
</tr>
<tr>
<td>Reducer, 3 X 2" sud</td>
<td>138.74</td>
<td>427.36</td>
<td>2.426</td>
<td>NA</td>
</tr>
<tr>
<td>Pipe, NPS 2, 30.00'</td>
<td>339.96</td>
<td>445.01</td>
<td>9.948</td>
<td>NA</td>
</tr>
<tr>
<td>Pipe, NPS 2, sched 40, 18.00'</td>
<td>394.45</td>
<td>540.88</td>
<td>6.052</td>
<td>NA</td>
</tr>
<tr>
<td>Ball valve</td>
<td>458.95</td>
<td>629.34</td>
<td>0.242</td>
<td>NA</td>
</tr>
<tr>
<td>Exit, 2" sharp-edged</td>
<td>517.65</td>
<td>709.82</td>
<td>6.594</td>
<td>NA</td>
</tr>
<tr>
<td>OUTLET</td>
<td>671.00</td>
<td>422.93</td>
<td>29.640</td>
<td></td>
</tr>
</tbody>
</table>
ONE-PAGE SUMMARY

File Name: POLY1-A

FLUID DESCRIPTION

Inlet Fluid Conditions
Spec. Heat Ratio (Cp/Cv): 1.400
Molecular Weight: 28.96
Specific Gravity: 1.000

Temperature: 80.00 Fahrenheit
Pressure: 1,239.42 in water (68F) abs = 44.70 PSIA
Density: 0.22 lb/cu ft
Specific Volume: 4.471 cu ft/lb

Abs. Viscosity: 0.018 centipoise
Kin. Viscosity: 5.080 centistokes

HARDWARE DESCRIPTION

Number of Components: 11
Branch Inlet Diameter: 3.068 inches
Branch Outlet Diameter: 2.047 inches

Branch Elevational Change: 0.0 feet
Branch K Factor: 37.04

FLOW DESCRIPTION

Mass Flow Rate: 5,653.86 lb/hr
Std Vol. Flow Rate: 1,234.552 SCFM
Inlet Vol. Flow Rate: 421.33 cu ft/min = 3,151.80 US gal/min
Inlet Velocity: 136.78 ft/sec (FPS)
Inlet Mach No.: 0.120
Outlet Vol. Flow Rate: 689.73 cu ft/min = 6,655.71 US gal/min
Outlet Velocity: 648.85 ft/sec (FPS)
Outlet Mach No.: 0.662

Differential Pressure: 29.00 PSID
FLOW DESCRIPTION - TABLE

Mass Flow Rate: 5,653.86 lb/hr
Std Vol. Flow Rate: 1,234.552 SCFM
Units as follows:
Volumetric Flow Rate: cu ft/min
Velocity: ft/sec (FPS)
Differential Pressure: PSID

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Inl Vel</th>
<th>Inl Vol</th>
<th>DP</th>
<th>Exp Fact</th>
</tr>
</thead>
<tbody>
<tr>
<td>INLET</td>
<td>136.78</td>
<td>421.33</td>
<td>29.000</td>
<td></td>
</tr>
<tr>
<td>Entrance, 3" proj</td>
<td>136.78</td>
<td>421.33</td>
<td>0.358</td>
<td>NA</td>
</tr>
<tr>
<td>Pipe, NPS 3, sched 40, 8.00'</td>
<td>137.57</td>
<td>423.76</td>
<td>0.260</td>
<td>NA</td>
</tr>
<tr>
<td>Ball valve</td>
<td>138.15</td>
<td>425.55</td>
<td>0.024</td>
<td>NA</td>
</tr>
<tr>
<td>Reducer, 3 X 2" sud</td>
<td>138.21</td>
<td>425.71</td>
<td>2.407</td>
<td>NA</td>
</tr>
<tr>
<td>Pipe, NPS 2, 30.00'</td>
<td>338.54</td>
<td>443.15</td>
<td>9.846</td>
<td>NA</td>
</tr>
<tr>
<td>Pipe, NPS 2, sched 40, 18.00'</td>
<td>391.84</td>
<td>537.31</td>
<td>5.962</td>
<td>NA</td>
</tr>
<tr>
<td>Ball valve</td>
<td>454.49</td>
<td>623.22</td>
<td>0.238</td>
<td>NA</td>
</tr>
<tr>
<td>[3] Elbow, 2" 90 LR flg/BW</td>
<td>457.50</td>
<td>627.35</td>
<td>3.646</td>
<td>NA</td>
</tr>
<tr>
<td>Exit, 2" sharp-edged</td>
<td>510.56</td>
<td>700.11</td>
<td>6.258</td>
<td>NA</td>
</tr>
<tr>
<td>OUTLET</td>
<td>648.85</td>
<td>421.33</td>
<td>29.000</td>
<td></td>
</tr>
</tbody>
</table>
ONE-PAGE SUMMARY

File Name: POLY2-A

FLUID DESCRIPTION

Inlet Fluid Conditions
Spec. Heat Ratio (Cp/Cv): 1.400
Molecular Weight: 28.96
Specific Gravity: 1.000

Temperature: 60.00 Fahrenheit
Pressure: 417.52 in water (68°F) abs = 15.06 PSIA
Density: 0.08 lb/cu ft
Specific Volume: 12.787 cu ft/lb

Abs. Viscosity: 0.018 centipoise
Kin. Viscosity: 14.101 centistokes

HARDWARE DESCRIPTION

Number of Components: 5
Branch Inlet Diameter: 3.998 inches
Branch Outlet Diameter: 3.998 inches

Branch Elevation Change: 0.0 feet
Branch K Factor: 3.18

FLOW DESCRIPTION

Mass Flow Rate: 1,792.65 lb/hr
Std Vol. Flow Rate: 391.436 SCFM
Inlet Vol. Flow Rate: 382.06 cu ft/min = 2,858.01 US gal/min
Inlet Velocity: 73.04 ft/sec (FPS)
Inlet Mach No.: 0.065
Outlet Vol. Flow Rate: 384.69 cu ft/min = 2,877.72 US gal/min
Outlet Velocity: 73.54 ft/sec (FPS)
Outlet Mach No.: 0.066

Differential Pressure: 0.14 PSID 4" H2O

4" will not work
382 acfm is much less than the 920 acfm into tank

4" H2O
FLOW DESCRIPTION - TABLE

Mass Flow Rate: 1,792.65 lb/hr
Std Vol. Flow Rate: 391.436 SCFM

Units as follows:
Volumetric Flow Rate: cu ft/min
Velocity: ft/sec (FPS)
Differential Pressure: PSID

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Inl Vel</th>
<th>Inl Vol</th>
<th>DP</th>
<th>Exp Fact</th>
</tr>
</thead>
<tbody>
<tr>
<td>INLET</td>
<td>73.04</td>
<td>382.06</td>
<td>0.144</td>
<td></td>
</tr>
<tr>
<td>Entrance, 4" sharp-edged</td>
<td>73.04</td>
<td>382.06</td>
<td>0.023</td>
<td>NA</td>
</tr>
<tr>
<td>Pipe, NPS 4, sched 40, 24.00'</td>
<td>73.12</td>
<td>382.47</td>
<td>0.056</td>
<td>NA</td>
</tr>
<tr>
<td>[2] Elbow, 4" 90 LR flg/BW</td>
<td>73.32</td>
<td>383.50</td>
<td>0.021</td>
<td>NA</td>
</tr>
<tr>
<td>Tee, 4" Thru Branch</td>
<td>73.39</td>
<td>383.88</td>
<td>0.045</td>
<td>NA</td>
</tr>
</tbody>
</table>

OUTLET | 73.54 | 382.06 | 0.144| |
ONE-PAGE SUMMARY

Air Flowing

FLUID DESCRIPTION

Inlet Fluid Conditions
Spec. Heat Ratio (Cp/Cv): 1.400
Molecular Weight: 28.96
Specific Gravity: 1.000

Temperature: 60.00 Fahrenheit
Pressure: 417.52 in water (68°F) abs = 15.06 PSIA
Density: 0.08 lb/cu ft
Specific Volume: 12.787 cu ft/lb

Abs. Viscosity: 0.018 centipoise
Kin. Viscosity: 14.101 centistokes

HARDWARE DESCRIPTION

Number of Components: 5
Branch Inlet Diameter: 6.031 inches
Branch Outlet Diameter: 6.031 inches

Branch Elevational Change: 0.0 feet
Branch K Factor: 2.56

FLOW DESCRIPTION

Mass Flow Rate: 4,545.59 lb/hr
Std Vol. Flow Rate: 992.556 SCFM
Inlet Vol. Flow Rate: 968.78 cu ft/min = 7,246.99 US gal/min
Inlet Velocity: 81.39 ft/sec (FPS)
Inlet Mach No.: 0.073
Outlet Vol. Flow Rate: 975.46 cu ft/min = 7,295.99 US gal/min
Outlet Velocity: 81.95 ft/sec (FPS)
Outlet Mach No.: 0.073

Differential Pressure: 0.14 PSID

6" will work
968.8 ACFM is greater than 920.11 acfm
Flow out of storage tank exceeds flow in
FLOW DESCRIPTION - TABLE

Mass Flow Rate: 4,545.59 lb/hr
Std Vol. Flow Rate: 992.556 SCFM

Units as follows:
 Volumetric Flow Rate: cu ft/min
 Velocity: ft/sec (FPS)
 Differential Pressure: PSID

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Inl Vel</th>
<th>Inl Vol</th>
<th>DP</th>
<th>Exp Fact</th>
</tr>
</thead>
<tbody>
<tr>
<td>INLET</td>
<td>81.39</td>
<td>968.78</td>
<td>0.144</td>
<td></td>
</tr>
<tr>
<td>Entrance, 6" sharp-edged</td>
<td>81.39</td>
<td>968.78</td>
<td>0.028</td>
<td>NA</td>
</tr>
<tr>
<td>Pipe, NPS 6, sched 40, 24.00'</td>
<td>81.50</td>
<td>970.07</td>
<td>0.042</td>
<td>NA</td>
</tr>
<tr>
<td>[2] Elbow, 6" 90 LR flg/BW</td>
<td>81.66</td>
<td>972.01</td>
<td>0.024</td>
<td>NA</td>
</tr>
<tr>
<td>Tee, 6" Thru Branch</td>
<td>81.75</td>
<td>973.10</td>
<td>0.051</td>
<td>NA</td>
</tr>
<tr>
<td>OUTLET</td>
<td>81.95</td>
<td>968.78</td>
<td>0.144</td>
<td></td>
</tr>
</tbody>
</table>
ONE-PAGE SUMMARY

File Name: POLY2-A

FLUID DESCRIPTION

Inlet Fluid Conditions
Spec. Heat Ratio (Cp/Cv): 1.400
Molecular Weight: 28.96
Specific Gravity: 1.000

Temperature: 60.00 Fahrenheit
Pressure: 435.25 in water (68°F) abs = 15.70 PSIA
Density: 0.08 lb/cu ft
Specific Volume: 12.266 cu ft/lb

Abs. Viscosity: 0.018 centipoise
Kin. Viscosity: 13.527 centistokes

HARDWARE DESCRIPTION

Number of Components: 5
Branch Inlet Diameter: 3.998 inches
Branch Outlet Diameter: 3.998 inches

Branch Elevation Change: 0.0 feet
Branch K Factor: 3.03

FLOW DESCRIPTION

Mass Flow Rate: 4,292.73 lb/hr
Std Vol. Flow Rate: 937.341 SCFM
Inlet Vol. Flow Rate: 877.61 cu ft/min = 6,564.99 US gal/min
Inlet Velocity: 167.78 ft/sec (FPS)
Inlet Mach No.: 0.150
Outlet Vol. Flow Rate: 910.31 cu ft/min = 6,809.59 US gal/min
Outlet Velocity: 174.03 ft/sec (FPS)
Outlet Mach No.: 0.157

Differential Pressure: 0.78 PSID

[Diagram with 1 psig in tank and 4" nozzle, air flow from tank to 4" φ. 877.6 vs. 889.7]
FLOW DESCRIPTION - TABLE

Mass Flow Rate: 4,292.73 lb/hr
Std Vol. Flow Rate: 937.341 SCFM
Units as follows:
Volumetric Flow Rate: cu ft/min
Velocity: ft/sec (FPS)
Differential Pressure: PSID

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Inl Vel</th>
<th>Inl Vol</th>
<th>DP</th>
<th>Exp Fact</th>
</tr>
</thead>
<tbody>
<tr>
<td>INLET</td>
<td>167.78</td>
<td>877.61</td>
<td>0.784</td>
<td></td>
</tr>
<tr>
<td>Entrance, 4" sharp-edged</td>
<td>167.78</td>
<td>877.61</td>
<td>0.127</td>
<td>NA</td>
</tr>
<tr>
<td>Pipe, NPS 4, sched 40, 24.00'</td>
<td>168.76</td>
<td>882.72</td>
<td>0.282</td>
<td>NA</td>
</tr>
<tr>
<td>[2] Elbow, 4" 90 LR flg/BW</td>
<td>170.97</td>
<td>894.32</td>
<td>0.118</td>
<td>NA</td>
</tr>
<tr>
<td>Tee, 4" Thru Branch</td>
<td>171.93</td>
<td>899.30</td>
<td>0.256</td>
<td>NA</td>
</tr>
<tr>
<td>OUTLET</td>
<td>174.03</td>
<td>877.61</td>
<td>0.784</td>
<td></td>
</tr>
</tbody>
</table>